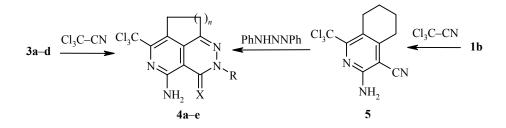
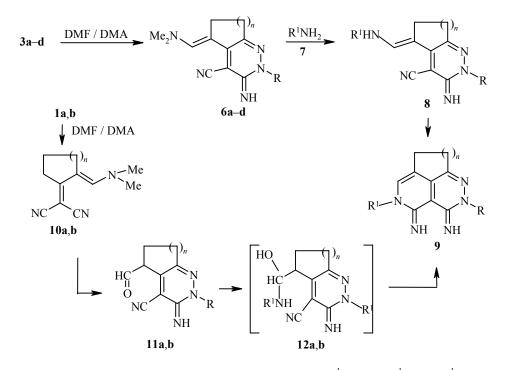

NOVEL SYNTHESIS OF 1,8-ALKANOPYRIDO-[3,4-*d*]PYRIDAZINE: A NEW RING SYSTEM

A. Z. A. Elassar¹ and Y. M. Elkholy²

Cycloalkylidenemalononitriles couple with various diazonium salts to yield the corresponding cycloalkeno[c]pyridazines, which react with trichloroacetonitrile to give the 1,8-alkanopyrido[3,4-d]-pyridazines. The reaction of cycloalkenopyridazines with DMF dimethylacetal gives enamine derivatives, which can be converted to 1,8-alkanopyrido[3,4-d]pyridazines via treating with hydrazine hydrate or aromatic amines. Substituted cycloalkenopyridines react with diazoaminobenzene to afford the corresponding 1,8-alkanopyridopyridazines.


Keywords: 1,8-alkanopyrido[3,4-d]pyridazines, cycloalkenopyridazines, cycloalkenopyridines.

Activated methylene nitriles are highly reactive reagents that have found extensive application in organic synthesis [1-3]. Condensed azines comprise a very interesting class of compounds because of their biological and medicinal activities [4-6]. In the last decade we have reported several novel syntheses of azines utilizing activated nitriles as starting materials [7-9]. In conjunction with our interest, we report here on the reactivity of ylidene derivatives **1a**,**b** toward organic reagents of different types with the aim of preparing 1,8-alkanopyrido-pyridazines. Thus, ylidene derivatives **1a**,**b** readily coupled with diazonium salts **2a-d** to give a product that was established as having structure **3a-f**. The mass spectrum of **3a** showed *m/z* 281 and its IR revealed the presence of NH and cyano groups at 3320 and 2212 cm⁻¹, respectively. ¹H NMR revealed the presence of aromatic protons at δ 7.98-7.53 ppm. ¹³C NMR indicated the presence of one cyano group at δ 116.89 ppm. Signals of other skeletal carbons appeared at the expected positions. The structures of **3b-f** were established similarly.


¹ Department of Chemistry, Faculty of Science, University of Kuwait, P. O. Box 5969-Safat-13060, Kuwait; e-mail: aelassar@yahoo.com. ² Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 12, pp. 1722-1729, December, 2002. Original article submitted October 10, 2001.

1521

4 a,d R = C₆H₄NO₂-*m*, b, c R = C₆H₄Cl-*p*, e R = Ph; a-d X = NH, e X = O; a, b *n* = 1, c-e *n* = 2

Cycloalkanopyridazines **3a-d** react readily under basic condition with trichloroacetonitrile to give 1,8-alkanopyrido[3,4-*d*]pyridazine derivatives **4a-d** in good yields. The same reaction product, **4c**, could be obtained on treatment of **1b** with trichloroacetonitrile to give **5** followed by coupling with arene diazonium salt **2a** to give the final isolated product **4c** in low yield. Moreover, a good yield was obtained *via* treating pyridine derivative **5** with diazoaminobenzene in refluxing aqueous acetic acid/hydrochloric acid mixture to furnish the oxo derivative **4e**. The structures of **4a-e** were established based on their elemental analyses and spectral data.

6 a, **d** $\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{4}\mathbf{N}\mathbf{O}_{2}$ -*m*, **b**, **c** $\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{4}\mathbf{C}\mathbf{I}$ -*p*, **a**, **b** n = 1, **c**, **d** n = 2; **7 a** $\mathbf{R}^{1} = \mathbf{N}\mathbf{H}_{2}$, **b** $\mathbf{R}^{1} = \mathbf{P}\mathbf{h}$, **c** $\mathbf{R}^{1} = 2$ -pyridyl; **9 a**-**f** $\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{4}\mathbf{N}\mathbf{O}_{2}$ -*m*, **a**, **b** $\mathbf{R}^{1} = \mathbf{N}\mathbf{H}_{2}$, **c**, **d** $\mathbf{R}^{1} = \mathbf{P}\mathbf{h}$, **e**, **f** $\mathbf{R}^{1} = 2$ -pyridyl, **a**, **c**, **e** n = 1, **b**, **d**, **f** n = 2; **10 a** n = 1, **b** n = 2; **11 a**, **b** $\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{4}\mathbf{N}\mathbf{O}_{2}$ -*m*, **a** n = 1, **b** n = 2

Furthermore, N,N-dimethylformamide dimethyl acetal (DMF/DMA) reacts with **3a-d** to give **6a-d**. Enamines **6a,d** react with hydrazine hydrate **7a** or aromatic amines **7b,c** to give *via* intermediate **8** pyridopyridazine derivatives **9a-f**. The formation of intermediates of the type **8** involves probably the loss of dimethylamine and is followed by cyclization under reaction conditions to give the final isolated product **9**. Alternatively, compounds **1a,b** were treated with DMF/DMA in DMF and piperidine to give the condensation products **10a,b**. The latter coupled with arene diazonium salt **2b** to give the aldehydes **11a,b**. Compounds **11a,b** reacted with hydrazine hydrate in ethanol/DMF mixture to give the final isolated products **9a,b** apparently through the intermediate **12**.

Com- pound	Empirical formula	Found, % Calculated, %				mp, °C	Color	Solvent	M.Wt./ <i>m/z</i>	Yield, %
		С	Н	N	S					
1	2	3	4	5	6	7	8	9	10	11
3a	$C_{14}H_{11}N_5O_2$	$\frac{60.01}{59.77}$	$\frac{4.00}{3.94}$	$\frac{25.02}{24.90}$		147	Brown	EtOH	281.3 (281)	78
3b	$C_{14}H_{11}ClN_4$	$\frac{62.32}{62.10}$	$\frac{3.99}{4.10}$	$\frac{20.65}{20.69}$		140	Yellow	EtOH	270.74	70
3c	$C_{15}H_{13}ClN_4$	$\frac{63.36}{63.26}$	$\frac{4.50}{4.61}$	$\frac{19.85}{19.67}$		165	Yellow	EtOH	284.77	72
3d	$C_{15}H_{13}N_5O_2$	$\frac{61.00}{60.99}$	$\frac{4.32}{4.44}$	$\frac{23.73}{23.71}$		123	Yellow	EtOH	295.33	76
3e	$C_{11}H_9N_5S$	$\frac{54.32}{54.29}$	$\frac{4.00}{3.73}$	$\frac{28.58}{28.78}$	$\frac{13.43}{13.18}$	200	Brown	EtOH	243.32	66
3f	$C_{17}H_{17}N_5OS$	$\frac{60.53}{60.14}$	$\frac{5.38}{5.05}$	$\frac{20.53}{20.63}$	$\frac{9.01}{9.44}$	175	Pale-brown	EtOH/DMF	339.46	65
4 a	$C_{16}H_{11}Cl_3N_6O_2$	$\frac{45.32}{45.14}$	$\frac{2.60}{2.61}$	$\frac{19.76}{19.74}$		>250	Brown	DMF	425.68 (425)	71
4b	$C_{16}H_{11}Cl_4N_5$	$\frac{46.53}{46.29}$	$\frac{2.59}{2.67}$	$\frac{16.59}{16.87}$		242	Yellow	DMF	415.12 (415)	63
4c	$C_{17}H_{13}Cl_4N_5$	<u>47.58</u> 47.57	$\frac{3.00}{3.05}$	$\frac{16.36}{16.32}$		284	Brown	DMF	429.15	75
4d	$C_{17}H_{13}Cl_3N_6O_2$	$\frac{46.34}{46.43}$	$\frac{3.01}{2.98}$	$\frac{19.00}{19.11}$		124	Brown	DMF	439.71	73
4e	$C_{17}H_{13}ClN_4O$	$\frac{51.22}{51.59}$	$\frac{3.53}{3.31}$	$\frac{14.00}{14.16}$		108	Brown	DMF	395.69	70
5	$C_{11}H_{10}Cl_3N_3$	$\frac{45.66}{45.46}$	$\frac{3.75}{3.47}$	$\frac{14.36}{14.46}$		160	Pale-brown	EtOH	290.59	69
6a	$C_{17}H_{16}N_6O_2$	<u>60.71</u> 60.69	$\frac{4.94}{4.80}$	<u>24.76</u> 24.98		197	Brown	EtOH	336.39 (336)	75
6b	$C_{17}H_{16}CIN_5$	$\frac{62.41}{62.66}$	$\frac{4.83}{4.95}$	$\frac{21.43}{21.49}$		213	Pale-brown	EtOH	325.83	78
6c	$C_{18}H_{18}ClN_5$	<u>63.93</u> 63.60	<u>5.41</u> 5.34	$\frac{20.41}{20.61}$		201	Yellow	EtOH	339.86	64

TABLE 1. Physical and Analytical Data of Newly Synthesized Compounds

TABLE 1 (continued)

1	2	3	4	5	6	7	8	9	10	11
6d	$C_{18}H_{18}N_6O_2$	<u>61.39</u> 61.69	$\frac{5.01}{5.18}$	$\frac{23.74}{23.98}$		189	Yellow	EtOH	350.42	66
9a	$C_{15}H_{13}N_7O_2$	<u>55.69</u> 55.71	$\frac{4.31}{4.06}$	$\frac{30.63}{30.32}$		157	Yellow	DMF	323.35 (323)	79
9b	$C_{16}H_{15}N_7O_2$	$\frac{57.01}{56.95}$	$\frac{4.53}{4.49}$	$\frac{29.01}{29.06}$		168	Yellow	DMF	337.38	72
9c	$C_{21}H_{16}N_6O_2$	$\frac{65.71}{65.60}$	$\frac{4.36}{4.20}$	$\frac{22.01}{21.86}$		>250	Brown	DMF	384.43	74
9d	$C_{22}H_{18}N_6O_2$	$\frac{66.31}{66.31}$	$\frac{4.81}{4.56}$	$\frac{21.38}{21.09}$		165	Brown	EtOH	398.46	76
9e	$C_{20}H_{15}N_7O_2$	$\frac{62.31}{62.32}$	$\frac{4.01}{3.93}$	$\frac{25.53}{25.44}$		134	Brown	EtOH	385.42	71
9f	$C_{21}H_{17}N_7O_2$	$\frac{63.31}{63.13}$	$\frac{4.39}{4.29}$	$\frac{24.63}{24.55}$		176	Brown	EtOH	399.45	73
11a	$C_{15}H_{11}N_5O_3$	$\frac{58.24}{58.24}$	$\frac{3.52}{3.59}$	$\frac{22.46}{22.64}$		144	Red	Acetone	309.31 (309)	69
11b	C ₁₆ H ₁₃ N ₅ O ₃	$\frac{59.38}{59.42}$	$\frac{3.84}{4.06}$	$\frac{21.77}{21.66}$		158	Red	Acetone	323.34	72
14b	C ₁₆ H ₁₃ N ₃ OS	$\frac{65.00}{65.25}$	$\frac{4.34}{4.44}$	$\frac{14.01}{14.22}$	$\frac{11.00}{10.85}$	173	Brown	EtOH	295.39	64
16a	$C_{21}H_{15}N_5O_3S$	$\frac{60.51}{60.41}$	$\frac{3.45}{3.62}$	$\frac{16.98}{16.77}$	$\frac{7.83}{7.68}$	188	Deep-yellow	DMF	417.48 (417)	70
16b	$C_{21}H_{16}N_4OS$	$\frac{67.60}{67.71}$	$\frac{4.05}{4.33}$	$\frac{14.91}{15.04}$	$\frac{8.31}{8.60}$	218	Brown	DMF	372.48	71
16c	$C_{22}H_{15}N_5O_4S$	$\frac{59.37}{59.30}$	$\frac{3.13}{3.40}$	$\frac{16.01}{15.72}$	<u>7.28</u> 7.19	243	Yellow	DMF	445.49	74
16d	$C_{22}H_{16}N_4O_2S$	$\frac{66.01}{65.97}$	$\frac{3.98}{4.03}$	$\frac{14.02}{13.99}$	$\frac{8.34}{8.00}$	>250	Brown	DMF	400.49	73
16e	$C_{22}H_{17}N_5O_3S$	$\frac{61.60}{61.23}$	$\frac{3.61}{3.97}$	$\frac{16.43}{16.23}$	$\frac{7.34}{7.43}$	206	Deep-yellow	DMF	431.51	74
16f	$C_{22}H_{18}N_4OS$	$\frac{68.21}{68.36}$	$\frac{4.57}{4.70}$	$\frac{14.23}{14.49}$	<u>8.56</u> 8.29	233	Brown	DMF	386.51	73
16g	$C_{23}H_{17}N_5O_4S$	$\frac{60.45}{60.11}$	$\frac{3.51}{3.73}$	$\frac{15.50}{15.24}$	$\frac{7.90}{7.97}$	195	Yellow	DMF	459.52	72
16h	$C_{23}H_{18}N_4O_2S$	$\frac{66.89}{66.63}$	$\frac{4.00}{4.38}$	$\frac{13.80}{13.51}$	$\frac{7.32}{7.73}$	212	Brown	DMF	414.52	70

TABLE 2. Spectral Data of Newly Synthesized Compounds

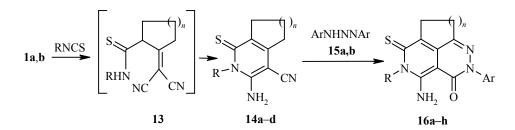

Com- pound	IR spectrum, v, cm ⁻¹	¹ H NMR spectrum, δ, ppm
1	2	3
3a*	3320 (NH), 2212 (CN)	7.98-7.53 (m, 4H, Ar); 6.25 (br, 1H, NH); 1.82-1.45 (m, 6H, 3CH ₂)
3b	3324 (NH), 2209 (CN)	7.89-7.33 (m, 4H, Ar); 6.05 (br, 1H, NH); 1.81-1.45 (m, 6H, 3CH ₂)
3c	3320 (NH), 2212 (CN)	7.78-7.21 (m, 4H, Ar); 6.30 (br, 1H, NH); 2.82-1.17 (m, 8H, 4CH ₂)
3d	3330 (NH), 2210 (CN)	7.97-7.43 (m, 4H, Ar); 6.20 (br, 1H, NH); 2.84-1.18 (m, 8H, 4CH ₂)
3e	3239 (NH), 2211 (CN)	10.98 (br, 1H, NH); 7.99-7.46 (m, 2H, thiazolyl-H); 1.85-1.07 (m, 6H, 3CH ₂)
3f	3406, 3329, 3225 (NH ₂ & NH), 2224 (CN), 1660 (CO)	7.48, 6.45 (br, 3H, NH & NH ₂); 2.66-1.55 (m, 14H, 7CH ₂)
4a	3401, 3358, 3325 (NH ₂ & NH)	7.87-7.42 (m, 4H, Ar); 8.50, 6.25 (br, 3H, NH & NH ₂); 1.72-1.45 (m, 4H, 2CH ₂)
4b	3411, 3345, 3320 (NH ₂ & NH)	7.98-7.32 (m, 4H, Ar); 8.40, 6.25 (br, 3H, NH & NH ₂); 1.71-1.50 (m, 4H, 2CH ₂)
4c	3434, 3373, 3331 (NH ₂ & NH)	7.76-7.01 (m, 4H, Ar); 8.40, 6.24 (br, 3H, NH & NH ₂); 1.85-1.06 (m, 6H, 3CH ₂)
4d	3422, 3331, 3321 (NH ₂ , & NH	7.88-7.24 (m, 4H, Ar); 8.42, 6.31 (br, 3H, NH & NH ₂); 1.82-1.06 (m, 6H, 3CH ₂)
4e	3418, 3321 (NH ₂), 1659 (CO)	7.57-7.10 (m, 5H, Ar); 8.40 (br, 2H, NH ₂); 1.80-1.07 (m, 6H, 3CH ₂)
5	3422, 3328 (NH ₂), 2213 (CN)	8.05 (br, 2H, NH ₂); 1.85-105 (m, 8H, 4CH ₂)
6a	3323 (NH), 2210 (CN)	7.93-7.15 (m, 4H, Ar); 6.98 (s, 1H, CH); 5.89 (br, 1H, NH); 2.45 (s, 6H, 2Me); 1.71-1.51 (m, 4H, 2CH ₂)
6b	3329 (NH), 2211 (CN)	7.67-7.15 (m, 4H, Ar); 6.98 (s, 1H, CH); 5.87 (br, 1H, NH); 2.45 (s, 6H, 2Me); 1.70-1.51 (m, 4H, 2CH ₂)
6c	3331 (NH), 2212 (CN)	7.87-7.15 (m, 4H, Ar); 6.98 (s, 1H, CH); 5.89 (br, 1H, NH); 2.45 (s, 6H, 2Me); 1.83-1.08 (m, 6H, 3CH ₂)
6d	3331(NH), 2212(CN)	7.98-7.13 (m, 4H, Ar); 6.97 (s, 1H, CH); 5.79 (br, 1H, NH); 2.46 (s, 6H, 2Me); 1.85-1.07 (m, 6H, 3CH ₂)
9a* ²	3412, 3334; 3226; 3215 (NH ₂ , 2NH)	10.32 (br, 2H, NH ₂); 8.03 (s, 1H, pyridine-H); 7.89-7.10 (m, 4H, Ar); 6.95, 5.79 (br, 2H, 2NH); 1.85-1.07 (m, 4H, 2CH ₂)
9b	3411, 3333; 3229; 3220 (NH ₂ , 2NH)	10.02 (br, 2H, NH ₂); 8.13 (s, 1H, pyridine-H); 7.79-7.10 (m, 4H, Ar); 6.85, 5.77 (br, 2H, 2NH); 2.78-1.11 (m, 6H, 3CH ₂)
9c	3331, 3219 (2NH)	8.69 (s, 1H, pyridine-H); 7.89-7.01 (m, 9H, Ar); 6.85, 5.59 (br, 2H, 2NH); 1.85-1.07 (m, 4H, 2CH ₂)
9d	3331, 3219 (2NH)	8.57 (s, 1H, pyridine-H); 7.91-7.11 (m, 9H, Ar); 6.85, 5.77 (br, 2H, 2NH); 2.79-1.23 (m, 6H, 3CH ₂)
9e	3345, 3219 (2NH)	8.78 (s, 1H, pyridine-H); 7.84-7.21 (m, 8H, pyridine & Ar); 6.75, 5.59 (br, 2H, 2NH); 1.85-1.17 (m, 4H, 2CH ₂)
9f	3365, 3223 (2NH)	8.35 (s, 1H, pyridine-H); 7.91-7.12 (m, 8H, pyridine & Ar); 6.65, 6.09 (br, 2H, 2NH); 2.80-1.11 (m, 6H, 3CH ₂)
11a	3323 (NH), 2212 (CN), 1728 (CO)	10.45 (s, 1H, CHO); 7.98-7.23 (m, 4H, Ar); 6.23 (br, 1H, NH); 2.84-1.53 (m, 5H, 1CH & 2CH ₂)
11b	3333 (NH), 2210 (CN), 1727 (CO)	10.50 (s, 1H, CHO); 7.97-7.20 (m, 4H, Ar); 6.05 (br, 1H, NH); 2.86-1.43 (m, 7H, 1CH & 3CH ₂)
14b	3342, 3328 (NH ₂), 2210 (CN), 1661 (CO)	7.54-7.01 (m, 5H, Ar); 6.52 (br, 2H, NH ₂); 1.85-1.17 (m, 6H, 3CH ₂)
16a	3343, 3332 (NH ₂), 1658 (CO)	7.82-7.23 (m, 9H, Ar); 6.51 (br, 2H, NH ₂); 1.85-1.06 (m, 4H, 2CH ₂)

 TABLE 2 (continued)

1	2	3
16b	3342, 3329 (NH ₂), 1559 (CO)	7.72-7.23 (m, 10H, Ar); 6.53 (br, 2H, NH ₂); 1.85-1.07 (m, 4H, 2CH ₂)
16c	3343, 3329 (NH ₂), 1651, 1659 (2CO)	7.91-7.21 (m, 9H, Ar); 6.54 (br, 2H, NH ₂); 1.85-1.07 (m, 4H, 2CH ₂)
16d	3343, 3328 (NH ₂), 1655, 1661 (2CO)	7.85-7.31 (m, 10H, Ar); 6.53 (br, 2H, NH ₂); 1.85-1.10 (m, 4H, 2CH ₂)
16e	3348, 3335 (NH ₂), 1663 (CO)	7.93-7.22 (m, 9H, Ar); 6.52 (br, 2H, NH ₂); 2.85-1.37 (m, 6H, 3CH ₂)
16f	3342, 3329 (NH ₂), 1659 (CO)	7.83-7.32 (m, 10H, Ar); 6.52 (br, 2H, NH ₂); 2.85-1.36 (m, 6H, 3CH ₂)
16g	3342, 3328 (NH ₂), 1663, 1659 (2CO)	7.93-7.22 (m, 9H, Ar); 6.50 (br, 2H, NH ₂); 2.85-1.35 (m, 6H, 3CH ₂)
16h	3331, 3328 (NH ₂), 1660, 1658 (2CO)	7.73-7.22 (m, 10H, Ar); 6.51 (br, 2H, NH ₂); 2.85-1.37 (m, 6H, 3CH ₂)

^{* 13}C NMR spectrum, δ, ppm: 165.16 (C-3); 157.12 (C-7a); 140.06, 139.12, 137.01, 135.11, 134.21, 129.61, 127.11, 124.10 (arom. carbons); 116.89 (CN); 28.66, 27.45, 25.98 (3CH₂).
 *^{2 13}C NMR spectrum, δ, ppm: 159.13, 158.78, 158.33, 157.02, 153.21,

149.12, 148.25, 147.68, 143.21, 138.21, 137.25, 135.01, 132.35 (arom. carbons); 26.35, 27.60 (2CH₂).

14 a, **c** R = Ph, **b**, **d** R = COPh, **a**, **b** n = 1, **c**, **d** n = 2; **15 a** Ar = Ph, **b** Ar = C₆H₄NO₂-*m*; **16 a**,**c**,**e**,**g** Ar = C₆H₄NO₂-*m*, **b**,**d**,**f**,**h** Ar = Ph, **a**,**b**,**e**,**f** R = Ph, **c**,**d**,**g**,**h** R = COPh, **a**-**d** n = 1, **e**-**h** n = 2

The target ring system, 1,8-alkanopyrido[3,4-*d*]pyridazine, could be obtained *via* treating **1a**,**b** with phenylisothiocyanate or benzoylisothiocyanate to give **14a-d** through the presumed intermediate **13**. Compounds **14a-d** reacted with diazoaminobenzenes **15a**,**b** in aqueous acetic acid/hydrochloric acid mixture to afford the final isolated products **16a-h**.

EXPERIMENTAL

All melting points are uncorrected. IR spectra were recorded in KBr with an IR spectrophotometer Shimadzu 408. ¹H NMR and ¹³C NMR spectra were recorded on a Varian EM-390 MHz spectrometer (390 MHz) using TMS as internal reference and chemical shifts are expressed as ppm. Mass-spectra were measured on a Shimadzu GCMS-QP 1000 Ex mass-spectrometer. Microanalytical data were obtained from the Microanalytical Data Unit at Cairo University, Egypt. Compounds **14a,c,d** were prepared as described previously [10, 11]. Characteristics of newly synthesized compounds are presented in Tables 1 and 2.

Preparation of Cycloalkeno[*c*]**pyridazine Derivatives 3a-f.** A solution of the diazonium salts (prepared from 0.01 mol of aromatic or heteroaromatic amine with the appropriate quantities of sodium nitrite and hydrochloric acid) was added to cycloalkylidenemalononitrile **1a** or **1b** (0.01 mol) in ethanol (50 ml) containing sodium hydroxide (0.50 g). The reaction mixture was stirred at room temperature 2 h. The solid product formed was collected by filtration and recrystallized from ethanol.

Preparation of 1,8-Alkanopyrido[3,4-*d***]pyridazines 4a-e.** A (compounds **4a-d**). To a solution of compound **3a-d** (0.01 mol) in DMF, trichloroacetonitrile (0.01 mol) and a few drops of piperidine were added. The reaction mixture was refluxed for 1 h. The reaction product was treated with ice-cold water and the solid product formed was filtered off and recrystallized from DMF.

B (compound **4e**). A mixture of **5** (0.01 mol), diazoaminobenzene (0.01 mol), acetic acid (15 ml), hydrochloric acid (15 ml), and a few drops of water was refluxed for 3 h and then allowed to cool. The reaction product was neutralized using sodium bicarbonate solution. The solid product so formed was collected by filtration, washed with ice-cold water several times, dried, and recrystallized from DMF.

Preparation of Tetrahidroisoquinoline 5. A solution of ylidene derivative **1b** (0.01 mol) in DMF (20 ml), trichloroacetonitrile (0.01 mol), and a few drops of piperidine was refluxed for 2 h. The reaction mixture was evaporated under vacuum and the solid product formed was collected by filtration and recrystallized from ethanol.

Preparation of N,N-Dimethylaminomethylidenecycloalkeno[c]pyridazines 6a-d. A solution of pyridazines **3a-d** (0.01 mol) in DMF (25 ml) was treated with DMF/DMA (0.01 mol) and a few drops of piperidine. The reaction mixture was refluxed for 2 h, then treated with cold water. The reaction product was collected by filtration and recrystallized from ethanol.

Preparation of N-Substituted Pyrido[3,4-*d***]pyridazines 9a-f.** A. To a solution of **6a-d** (0.01 mol) in DMF (25 ml), hydrazine hydrate (aniline or 2-aminopyridine) (0.01 mol) was added. The reaction mixture was refluxed for 2 h. Ice-cold water was added and the solid product so formed was collected by filtration and recrystallized from proper solvent.

B. To a solution of **11a** or **11b** (0.01 mol) in DMF (25 ml), hydrazine hydrate (0.01 mol) was added. The reaction mixture was heated under reflux for 2 h. Ice-cold water added and the solid product so formed was collected by filtration and recrystallized from the proper solvent.

Synthesis of Cycloalkenepyridazinealdehydes 11a,b. A solution of diazonium salt (prepared as described in the preparation of 3a-d) was added dropwise with intensive stirring for 2 h to a solution of 10a or 10b (0.01 mol) in DMF and a solution of NaOH (0.1 g dissolved in 10 ml of water). The solid product so formed was collected by filtration and recrystallized from acetone.

Preparation of Hydroisoquinoline 14b. To a solution of 1a (0.01 mol) in ethanol (25 ml) benzoyl isothiocyanate (0.01 mol) and a few drops of piperidine were added. The reaction mixture was refluxed for 3 h. The solid product formed upon treating the reaction mixture with ice-cold water was collected by filtration and recrystallized from ethanol.

Preparation of Thioxopyridopyridazinones 16a-h. A mixture of **14a-d** (0.01 mol), diazoaminobenzene (0.01 mol), acetic acid (15 ml), hydrochloric acid (15 ml), and a few drops of water was refluxed for 3 h and then allowed to cool. The reaction product was neutralized with sodium bicarbonate solution. The solid product so formed was collected by filtration, washed with ice-cold water several times, dried, and recrystallized from DMF.

REFERENCES

- 1. A. Z. A. Elassar, Y. M. Elkholy, and M. H. Elnagdi, J. Prakt. Chem., 340, 491 (1998).
- 2. V. Ji. Ram, P. Srivastava, M. Nath, and A. S., Synthesis, 11, 1884 (1999).
- 3. A. Gola, E. Samartzi, V. Bardakos, M. Petroliagi, O. Igglessi-Markopoulou, J. Markopoulos, and J. V. Barkley, *J. Heterocycl. Chem.*, **37**, 681 (2000).

- 4. A. Z. A. Elassar, Y. M. Elkholy, and M. H. Elnagdi, *Pharmazie*, **51**, 714 (1996).
- 5. J. W. A. Findlay and G. G. Coker, US Pat. 4639459; Chem. Abstr., 106, 196267 (1987).
- 6. V. K. Arora and E. E. Edward, J. Heterocycl. Chem., 36, 201 (1999).
- 7. A. Z. A. Elassar, *Pharmazie*, **53**, 223 (1998).
- 8. A. Z. A. Elassar, J. Chem. Res. (S), 96 (1999).
- 9. F. Al-Omran, N. Al-Awadhi, A. Z. A. Elassar, and A. A. El-Khair, J. Chem. Res. (S), 20 (2000).
- 10. K. Gewald, J. Liebscher, and M. Keydel, J. Prakt. Chem., 312, 533 (1970).
- 11. A. M. El-Sayed and H. Abdel-Ghany, J. Heterocycl. Chem., 37, 1233 (2000).